Inverse Heat Conduction Problems

نویسنده

  • Krzysztof Grysa
چکیده

In the heat conduction problems if the heat flux and/or temperature histories at the surface of a solid body are known as functions of time, then the temperature distribution can be found. This is termed as a direct problem. However in many heat transfer situations, the surface heat flux and temperature histories must be determined from transient temperature measurements at one or more interior locations. This is an inverse problem. Briefly speaking one might say the inverse problems are concerned with determining causes for a desired or an observed effect. The concept of an inverse problem have gained widespread acceptance in modern applied mathematics, although it is unlikely that any rigorous formal definition of this concept exists. Most commonly, by inverse problem is meant a problem of determining various quantitative characteristics of a medium such as density, thermal conductivity, surface loading, shape of a solid body etc. , by observation over physical fields in the medium or – in other words a general framework that is used to convert observed measurements into information about a physical object or system that we are interested in. The fields may be of natural appearance or specially induced, stationary or depending on time, (Bakushinsky & Kokurin, 2004). Within the class of inverse problems, it is the subclass of indirect measurement problems that characterize the nature of inverse problems that arise in applications. Usually measurements only record some indirect aspect of the phenomenon of interest. Even if the direct information is measured, it is measured as a correlation against a standard and this correlation can be quite indirect. The inverse problems are difficult because they ussually are extremely sensitive to measurement errors. The difficulties are particularly pronounced as one tries to obtain the maximum of information from the input data. A formal mathematical model of an inverse problem can be derived with relative ease. However, the process of solving the inverse problem is extremely difficult and the so-called exact solution practically does not exist. Therefore, when solving an inverse problem the approximate methods like iterative procedures, regularization techniques, stochastic and system identification methods, methods based on searching an approximate solution in a subspace of the space of solutions (if the one is known), combined techniques or straight numerical methods are used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions

In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (I...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution

Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...

متن کامل

Solving random inverse heat conduction problems using PSO and genetic algorithms

The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...

متن کامل

Development of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature

A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...

متن کامل

A novel computational procedure based on league championship algorithm for solving an inverse heat conduction problem

Inverse heat conduction problems, which are one of the most important groups of problems, are often ill-posed and complicated problems, and their optimization process has lots of local extrema. This paper provides a novel computational procedure based on finite differences method and league championship algorithm to solve a one-dimensional inverse heat conduction problem. At the beginning, we u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012